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A computational method capable of simulating the spatial evolution of disturbances in
a boundary-layer #ow with compliant coatings has been developed. The #ow geometry being
an unknown of the problem, this di$culty is overcome by use of a mapping, the domain being
"xed in the computational coordinates. The model takes into account the nonlinear #uid-
structure interaction all over the #ow "eld, as well as nonparallel e!ects due to the wall
displacement and to the boundary-layer growth. First, the numerical solution procedure is
tested by focusing on the linear and nonlinear spatial disturbance evolution for a spring-backed
elastic plate which is only unstable with respect to Tollmien}Schlichting-type travelling waves.
The numerical procedure is then used to study the in#uence of the initial disturbance amplitude
on the disturbance development for a tensioned membrane. Finally, to simulate a true physical
experiment, a spring-backed elastic plate of "nite length is considered. It is shown that the
numerical model is capable of detecting the interaction between Tollmien}Schlichting instabili-
ties and #ow-induced surface instabilities at the interface. ( 2000 Academic Press
1. INTRODUCTION

The in#uence of compliant coatings on the transition in shear #ows has extensively been
studied since the pioneering experiments of Kramer (1960). Soon thereafter, it was recog-
nized that compliant walls may be responsible for the occurrence of instability mechanisms
other than the usual Tollmien}Schlichting waves which trigger the onset of transition in
boundary-layer #ow along rigid walls. The various instability modes due to the e!ect of wall
compliance have originally been identi"ed by Benjamin (1960). According to a classi"cation
scheme due to Carpenter & Garrad (1985, 1986), the instability waves are divided into
#uid-based Tollmien}Schlichting instabilities and solid-based #ow-induced surface instabil-
ities. The latter are analogous to instabilities observed in hydro- and aeroelasticity. They
consist of tavelling-wave #utter moving at speeds close to the solid free-wave speed, as well
as static, divergence waves. Divergence waves have to be interpreted as an absolute
instability, contrary to Tollmien}Schlichting instabilities and travelling-wave #utter which
are convective instabilities. A thorough investigation of the in#uence of compliant coatings
on Tollmien}Schlichting waves as well as the linear stability analysis of #ow-induced
surface instabilities has been performed by Carpenter & Garrad (1985, 1986). The problem
of the proper choice of coating parameters capable of delaying spatial instabilities has been
addressed by, among others, Joslin & Morris (1989). There is now clear evidence that,
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although compliant walls may have a favourable in#uence on instabilities triggered by
Tollmien}Schlichting waves, for highly compliant walls travelling-wave #utter becomes
dangerous. The state of the art at the late eighties has been documented by the surveys of
Riley et al. (1988) and Carpenter (1990). An up-date of a review about boundary-layer
interactions with compliant coatings (Gad-el-Hak 1986) has recently been published by
Gad-al-Hak (1996). [Note that, in all the studies mentioned, the compliant wall acts as
a passive device, whereas for instance Metcalfe et al. (1986) investigated the response of
a laminar boundary-layer #ow to active wall forcing for small wall amplitudes.]

Subsequent studies of compliant-wall/#ow interaction con"rmed that, while Tol-
lmien}Schlichting waves may be suppressed using compliant coatings, hydroelastic instabil-
ities may lead to #ow breakdown. For instance, as shown by Lucey & Carpenter (1995)
performing a linear stability analysis, the dramatic form of boundary-layer breakdown
observed experimentally by Gaster (1987) was due to travelling-wave #utter. Recently,
Davies & Carpenter (1997b) assessed the complex interaction between the various instabil-
ity modes for a channel #ow between compliant walls. Considering channel #ow as a model
problem for more general shear #ows, Davies & Carpenter among others focus on the
interaction between Tollmien}Schlichting modes and travelling-wave #utter modes. Those
mode interactions can lead to absolute instability, contrary to the rigid case which is known
to be convectively unstable (Deissler 1987). The problem of secondary instabilities of
a boundary-layer #ow with compliant coatings has been addressed by Joslin & Morris
(1992), showing that secondary instability growth rates can be signi"cantly reduced by use
of compliant walls.

Plane channel #ow has the advantage of being truly parallel, contrary to boundary-layer
#ow. Hence, some studies taking into account nonlinear e!ects in the presence of compliant
walls focused on channel #ow as a prototype for shear #ows. Rotenberry (1992) and
Ehrenstein & Rossi (1993) considered a quite simple wall governed by Hooke's law,
computing nonlinear travelling waves of Tollmien}Schlichting type. For this perhaps
oversimpli"ed model it has been shown that "nite-amplitude travelling waves may exist for
parameter values where the basic state is linearly stable. These results are in qualitative
agreement with the "ndings of Thomas (1992), based on an asymptotic triple-deck approach.

More recently, Ehrenstein & Rossi (1996) focused on nonlinear Tollmien}Schlichting
waves for a Blasius #ow over compliant coatings, using the locally parallel #ow approxima-
tion. It was shown numerically that for a speci"c class of compliant coatings, modelled as
tensioned membranes, the nonlinear bifurcation behaviour becomes highly subcritical.
However, for these computations the shortcomings of the underlying parallel-#ow assump-
tion became evident by considering highly #exible walls. In that case the computed
mean-#ow distortions appeared to be erroneous, which was attributed by Ehrenstein
& Rossi to nonparallel e!ects. The in#uence of boundary-layer growth on the linear
stability in the presence of compliant coatings has been addressed by Yeo et al. (1994), using
a multiple-scale analysis. According to these results, the nonparallelism has an overall
destabilizing in#uence on the Tollmien}Schlichting instabilities as well as on travelling-
wave #utter, in particular for low Reynolds numbers.

An alternative way for including nonparallel e!ects would be to perform a direct
numerical simulation of the spatial disturbance evolution. Recently, numerical simulations
of the linear evolution of disturbance waves in a channel, the lower wall being covered with
a compliant panel of "nite length, have been performed by Davies & Carpenter (1997a). The
response of compliant walls to uniform #ow has recently been studied by Lucey et al.
(1997a) using a nonlinear model for the wall mechanics. The #uid perturbation pressure is
evaluated assuming unsteady potential #ow, and it is shown that the #uid-structure
interaction may lead to the appearance of nonlinear divergence waves. Computations of
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complex interactions between a boundary layer and a compliant wall, the rotational #ow
component being obtained by a discrete-vortex method, have been published by Lucey et al.
(1997b).

The aim of the present study is to perform a direct numerical simulation of the nonlinear
#uid-structure interaction by solving the Navier}Stokes equations coupled to the wall
model. The numerical simulation of spatial disturbance growth in the presence of compliant
walls is a challenging problem, the geometry of the #ow being part of the solution. The
problem of direct numerical simulation of #ow with complex, time-dependent wall geomet-
ries, has been addressed for instance by Carlson et al. (1995). In the present study, we present
a numerical procedure capable of describing the spatial, nonparallel evolution of distur-
bance growth in a boundary layer coupled to a #exible wall. The model takes into account
the full nonlinear interaction between the #uid and the structure. The wall is covered with
a spring-backed elastic plate or a tensioned membrane similar to #exible wall models used
by other investigators.

The paper is organized as follows. In Section 2, the governing equations and the
numerical simulation procedure are outlined. Numerical experiments are presented in
Section 3. The solution procedure is tested and di!erent types of compliant coatings are
considered including the case of a "nite-length panel. Finally, Section 4 is devoted to
a summary of the results.

2. GOVERNING EQUATIONS AND SOLUTION PROCEDURE

2.1. WALL MODEL AND BASIC STATE

The compliant wall is modelled as a spring-backed elastic plate, or alternatively as
a tensioned membrane with damping, where only vertical displacements are allowed.
Similar compliant coatings have been considered in previous works and they are generally
believed to be representative models for the study of passive transition control using #exible
walls. Furthermore, the onset of transition in boundary-layer #ows being triggered by
two-dimensional Tollmien}Schlichting waves, we limit the scope of the present study to
two-dimensional disturbances and we emphasize the #uid-structure interaction.

We consider an incompressible #uid #ow of viscosity l* past a plane wall, which in the
rigid case is located at y*"0, 04x*. The basic state is a boundary-layer #ow in the
absence of a pressure gradient and hence the interface remains #at. The basic state
(;*(x*, y* ),<* (x*, y* )) is a solution of the boundary-layer equations along a #at plate. The
computational domain in the streamwise direction is x*
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b
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"cJl*x*
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solution of the Blasius equation [cf. Schlichting (1979)], to determine the nondimensional,
nonparallel basic #ow at x
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less variables). The Reynolds number is de"ned with the displacement thickness at in-#ow
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When the wall is compliant the dimensionless vertical displacement g (x, t) is a solution of
the dynamical equation
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Here p is the dimensionless perturbation #uid pressure and p is the normal viscous stress of
the perturbation #uid velocity, with
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(u, v) being, respectively, the streamwise and the wall-normal component of the disturbance

#ow velocity and n"(n
1
, n
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)"(1/J1#(Lg/Lx)2(!Lg/Lx, 1) is the unit normal vector at

the wall. The dimensionless coating parameters are such that
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the coating characteristics m*, d*, B*, ¹* and i* being, respectively, the mass density per
unit length, damping, #exural rigidity of the plate, tension, and spring sti!ness. As usual the
pressure is made dimensionless using o*;*2

=
, o* being the #uid density. The total #uid #ow

is governed by the Navier}Stokes system which has to be solved in the (unknown) domain

x
a
4x4x

b
, g(x, t)4y4R. (3)

Only vertical displacements are allowed, hence the kinematical condition at the moving
boundary may be expressed as

(;#u)[x, g (x, t)]"0,
Ln

Lt
"(<#v)[x, g (x, t)]. (4)

2.2. THE NUMERICAL SOLUTION PROCEDURE

The geometry being an unknown of our problem, we transform the physical domain (3) into
a computational "xed domain, using the mapping

t@"t, x@"x, y@"y!g (x, t). (5a)

Using equation (5a) the divergence operator, the Laplacian and the time derivative become
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The Navier}Stokes system may be written in terms of the disturbance #ow velocity u and
the disturbance pressure p as

Lu

Lt@
#G(u)#N(u)!

1

Re
D@u#$@p"!G¸ (g)!G¸(g, u)!G(g, p)!N (g, u), (6a)

$ ' u"!D (g) 'U!D (g) ' u, (6b)



BOUNDARY-LAYER FLOW WITH COMPLIANT WALLS 161
where the gradient term G(u) and the convective term N (u) are G(u)"(U '$@ )u#(u '$@)U
and N(u)"(u '$@)u. Although the basis #ow U is solution of the boundary-layer equations
only, we have assumed that U is a solution of the above Navier}Stokes system in the #at
case (g,0), according to order-of-magnitude analysis (Joslin et al. 1993). In the compliant
case, extra terms arise in the right-hand side of equations (6a), as a consequence of the
mapping, with

G¸(g)"D
t
(g)U#(U 'D (g))U!

1

Re
¸ (g)U (6c)

depending on the unknown g only, whereas

G¸(g, u)"D
t
(g)u#(U 'D (g))u#(u 'D (g))U!

1

Re
¸ (g)u (6d)

involves products of g and u. Finally the non-Cartesian part of the convective term and the
pressure gradient are

N(g, u)"(u 'D(g))u, G(g, p)"D (g)p. (6e)

In the computational frame (x@, y@), the kinematical conditions (4) and the boundary
conditions at in"nity for the disturbance velocity "eld are

u (x@, 0)"0,
Lg
Lt@

"v (x@, 0) and p, u, vP0 as y@PR. (7)

For the transformed system, the dynamical equation (2a) is written at the "xed boundary
y@"0, the normal viscous stress (2b) being transformed by equation (5a).

Using the identity in the physical frame of coordinates
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)"(u#;, v#< ) being the total velocity "eld; also, taking the divergence of the

momentum equations of the Navier}Stokes system, one gets for the total #uid pressure
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for incompressible #ow with $ ' u
t
"0. Consequently, the Poisson equation for the distur-

bance pressure in the transformed coordinates becomes

D@p"!¸(g)p!2J@(u, v ), (9)

with J@ (u, v)"J (u#;, v#< )!J (;, < ).
For time-integration of (6a), second-order backward Euler di!erencing is used; the

Cartesian part of the Laplacian as well as the pressure gradient are taken implicitly. An
explicit second-order Adams-Bashforth scheme is used for the remaining terms. The discrete
version of equations (6a, b) is

(D@!3q)un`1"$@qn`1#/M!4qun#qun~1#Re[G(u)#N(u)]n,n~1N

#Re/[G¸ (g)#G¸(g, u)#G(g, p)#N(g, u)]n,n~1, (10a)

$ ' un`1"!/[D(g) 'U#D (g) ' u]n,n~1. (10b)
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The superscript (n, n!1) means an explicit Adams}Bashforth di!erencing with
[ ]n,n~1"2[ ]n![ ]n~1. Here q"Re/2Dt, Dt being the time-step and q"Rep. In order
to avoid re#ections at the out-#ow boundary, a bu!er domain technique is used [cf. Streett
& Macaraeg (1989)]. For this purpose, a bu!er domain in inserted between the physical
domain and the out-#ow boundary. The gradient and convective terms as well as those
depending on g in equation (10) are multiplied by an attenuation function / with /"1 in
the physical domain of interest and rapidly decreasing to zero in the bu!er domain. Thus,
system (10) is progressively transformed into a linear Stokes-type problem for a Cartesian
geometry in the bu!er domain and the instability is smoothed out. The discrete version of
the pressure equation (9) is (q"Re p)

D@qn`1"!Re/[¸(g)p#2J@(u, v)]n,n~1. (11)

Equation (11) is the Poisson equation for the perturbation pressure, assuming incompressi-
bility $ ' u

t
"0 for the total #uid velocity. Reciprocally, let us assume that, during the

time-marching algorithm, $ ' u
t
"0 at previous time-steps n, n!1. Taking the divergence

of the discretized momentum equation together with equation (11), one gets a homogeneous
(up to second-order in time) Helmholtz equation for ($ ' u

t
)n`1. It is hence su$cient to

annihilate ($ ' u
t
)n`1 on the boundary C that is up to second-order in time

$@ ' un`1DC "!/[D(g) 'U#D(g) ' u]n,n~1DC (12)

to recover a divergence-free velocity "eld at the actual time step n#1. Consequently, for
a reasonably divergence-free initial condition, the incompressibility condition will be
satis"ed with the same order of accuracy as that of the time-marching algorithm.

The time-di!erencing of the kinematical condition (7) leads to

un`1(x@, 0)"0; vn`1 (x@, 0)"
3gn`1!4gn#gn~1

2Dt
. (13)

The discrete version of the dynamical equation, using second-order backward di!erencing
in time, is

m
2gn`1!5gn#4gn~1!gn~2

Dt2
#d
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2Dt

#B
L4gn`1

Lx@4
!¹
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Lx@2
#ign`1"/M!pn`1#pn,n~1N(x@, 0). (14)

Here the pressure term is taken implicitly, and the Adams}Bashforth scheme is used for the
normal viscous stress. Again, we multiply the forcing term by the attenuation function /,
consequently the displacement g will tend to zero in the bu!er domain. To equation (14) we
have to add the boundary conditions for g which will be discussed in Section 3. The
algorithm to solve equations (10)} (12) coupled to (13) and (14) is described in the Appendix
and it is based on the in#uence matrix technique used to recover a boundary condition for
the pressure equivalent to equation (12).

For the space discretization, fourth-order central "nite di!erences are used for the second
derivatives in the steamwise x@-direction, except at boundary and near-boundary nodes
where fourth-order forward or backward di!erences are used. In order to avoid oscillations,
we use eighth-order "nite di!erences for the "rst derivatives in x@ as recommended by Rist
& Fasel (1995) for the simulation of transition in the #at-plate case. The attenuation
function / is the same as in Joslin et al. (1992, 1993).
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Chebyshev collocation is used in the wall-normal y@-direction. We map the unbounded
domain 04y@(R on a "nite domain m3[!1, 1], using the algebraic transformation

y@"
y
.!9

¸ (1#m)

2¸#y
.!9

(1!m)
, the collocation points being m

j
"cos( jn/K), 04j4K. (15)

In fact, the domain y@ is truncated at 04y@4y
.!9

(typically y
.!9

575 and ¸+1) as in
Joslin et al. (1992). The y@-derivatives are computed by means of the collocation matrix
method [cf. Canuto et al. 1987)]. For the inversion of the discrete Helmholtz- and
Poisson-like equations we use the eigenvalue decomposition method. (The problem, once
the discrete second-derivative operator in y@ diagonalized, is transformed into a series of
one-dimensional Helmholtz-like equations in x@, which can be solved e$ciently using the
pentadiagonal structure of the matrices.)

3. NUMERICAL RESULTS

Linear spatial stability results are used to prescribe a disturbance-forcing function at in-#ow
x
a

whereas at out-#ow, the disturbance being smoothed out in the bu!er domain, the
perturbation is set to zero. First, we brie#y discuss some linear stability results. Then, the
numerical solution procedure is tested, before some numerical experiments are performed
for a tensioned membrane and a spring-backed elastic plate.

3.1. LINEAR STABILITY REVISITED

The linear stability of a boundary-layer #ow with compliant coatings has extensively been
studied for di!erent classes of #exible surfaces. Here, linear stability analyses, based on the
parallel-#ow assumption for the basic #ow U"(;(y), 0), provide the in-#ow conditions for
the nonparallel spatial simulation of the disturbance development.
Linearizing equations (6a, b) one gets

Lu
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d;

dy@
(y@)D i, (16a)

$@ ' u"
Lg
Lx@

d;

dy@
(y@), (16b)

i being the unit vector in the streamwise x@-direction, and ;(y@) being the Blasius pro"le.
In most of the studies on linear stability no mapping is performed in the linearized

Navier}Stokes system [which then reduces to the left-hand side of equations (16a, b)].
Rather than performing the coordinate transformation, the kinematical conditions
u
t
(x, g)"0, Lg/Lt"v

t
(x, g) for the total #ow velocity are expanded in a Taylor series, and

after linearization

uJ (x, 0)#g
d;

dy
(0)"0,

Lg
Lt

"vJ (x, 0), (17)

(uJ , vJ ) being the perturbation velocity, solution of the linearized Navier}Stokes system in
Cartesian coordinates. One may wonder if the two approaches are equivalent, that is, by
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comparing both incompressibility conditions, if one may write u"uJ #g[d;(y)/dy] and
v"vJ . Injecting this expression into equation (16a) one gets

NS A
uJ
vJ B"

1

Re
g

d3;

dy3
(y) i, (18)

where NS(uJ
vJ
) stands for the linearized Navier}Stokes system in Cartesian coordinates. While

the extra term on the right-hand side in equation (18) will be small for moderately #exible
walls, it may become nonnegligible for large wall displacements which occur for instance
when travelling-wave #utter is present. In the following, we shall qualify as Cartesian
formulation (CF) the system (18) without the right-hand side, the system being in that case
equivalent to the Orr}Sommerfeld equation once the solution is written as normal modes,
coupled to the kinematical condition (17) and the dynamical equation (2) (the normal
viscous stress being linearized). The system (16) will be called the non-Cartesian formulation
(NCF).

For the standard normal-mode analysis, writing

u"(uL (y), vL (y)) e* (ax~ut), p"pL (y)e* (ax~ut), g"g( e* (ax~ut), (19)

leads to an eigenvalue problem for the complex temporal eigenvalue u as function of the
wavenumber a and the Reynolds number Re, which is solved by standard QZ-algorithms,
once the modes have been discretized by Chebyshev collocation. To compare both the CF-
and NCF-results, an example of Carpenter & Gajjar (1990) is considered as a test case. The
modal is that of a Kramer-type wall, where a #exible thin plate is supported by springs. The
elastic modulus is E"0)5 MN/m2, the plate density o

m
"946 kg/m3, the plate thickness

b"2 mm and the spring sti!ness i*"115 MN/m3. The coe$cients in equation (2c) are
m*"bo

m
, B*"Eb3/[12(1!l2

p
)], with l

p
"0)5 (d*"¹*,0). The #uid is water with

;*
=
"18 m/s, o*"1025 kg/m3 and l*"1)37]10~6 m2/s.

The computations have been performed at Red"2000, the Reynolds number being
formed with the boundary-layer displacement thickness. Focusing on temporally growing
travelling-wave #utter instabilities, the complex wave speed c"u/a"c

r
#ic

i
has been

computed as function of the wavenumber a. The results are depicted in Figure 1, the solid
line being the real part c

r
. The dotted line corresponds to values of 100c

i
for the CF-

approach, whereas the broken line represents the ampli"cation rates obtained using the
transformed NCF system. Concerning the real part c

r
, the two approaches are identical.

However, there are di!erences for the ampli"cation rate c
i
in Figure 1. Indeed the CF

computations predict an instability (for c
i
'0) at low wavenumbers a, where c

r
'1. This is

identical to the CF results published by Carpenter & Gajjar (1990) (those instabilities with
a wave speed c

r
'1 have been considered as unphysical by these authors). However, this

instability disappears when the NCF-approach is used for the stability computations.
Besides a numerical CF-analysis, Carpenter & Gajjar (1990) also performed an asymp-

totic analysis including nonparallel e!ects due to the wall displacement. It appears that our
NCF-computations shown in Figure 1 are almost identical to those shown in Carpenter
& Gajjar (1990, Figure 9) using the asymptotic approach. The di!erences between the CF-
and NCF-computations may also be seen by inspecting the eigenfunctions. For a"0)11,
Figure 2 shows the quantity (;!c

r
)vL

i
, vL

i
being the imaginary part of the wall-normal mode

(the latter one being normalized such that vL"1 at the wall). Again, the in#uence of the
nonparallel terms due to g is evident; the solid-line pro"le corresponds to the CF-system
and the broken line to the NCF-approach. Also [cf. Carpenter & Gajjar (1990, Figure 10)],
our computations with system (16) are close to the asymptotic analysis of Carpenter
& Gajjar. Note that for the CF-type computations for a"0)11, c"0)828#i0)00307



Figure 1. Complex wavespeed c"c
r
#ic

i
for TWF instability, spring-backed #exible plate with b"2 mm,

E"0)5 MN/m2 and i*"115 MN/m3 ; *, c
r
; } } }, 100c

*
with transformed NCF-system; ) ) ) , 100c

i
with

CF-system.

Figure 2. Pro"le of (;!c
r
)vL

i
with vL"vL

3
#ivL

i
the TWF instability wall-normal mode, for the same parameter

values as in Figure 1: *, CF-approach; } }}, NCF-approach.
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(identical with the results of Carpenter & Gajjar for their CF-computations), whereas for
the NCF-approach one gets c"0)829#i0)00179, which again illustrates the in#uence of
nonparallel e!ects due to the wall displacement on the ampli"cation rate c

i
.

3.2. VALIDATION OF SIMULATION PROCEDURE

The spatial stability results for real frequencies u and complex wavenumbers a are used to
prescribe the time-periodic perturbation at in-#ow x

a
. These computations have been

performed using the linearized Navier}Stokes system (16) with equation (19) (coupled to the
kinematical condition and to the dynamical equation). The wavenumber appears as
squared quantity in the stability equations, and a generalized eigenvalue problem for a can
be recovered by introducing extra variables.

Writing the stability mode as u; (y)e*(a(x~xa)~u0 t+ (with u; (y)"u;
r
(y)#iu;

i
(y)), the real

time-dependent in-#ow perturbation is

U(y, t)"u;
r
(y)cos(u

0
t)#u;

i
(y)sin(u

0
t), with Max

y
JuL

r
(y)2#uL

i
(y)2"A, (20)

A being a given amplitude and uL (y) the steamwise component of the eigenmode. In order to
test our numerical solution procedure, we consider as a "rst test-case a spring-backed elastic
plate [¹"d"0 in equation (2a)] with a (perhaps unrealistic) plate thickness of
b"10~1mm; the elastic modulus is E"0)5 MN/m2 and the spring sti!ness is
i*"104 MN/m3 (with a plate density of o

m
"946 kg/m3, the #uid being water with

;*
=
"18 m/s, o*"1025 kg/m3 and l*"1)37]10~6 m2/s). Here the spring sti!ness is

su$ciently high to suppress travelling-wave #utter and the plate is su$ciently thin for the
#exibility to have an in#uence on linear stability. Spatial linear stability results are depicted
in Figure 3; the broken line corresponds to the compliant case and the linear stability results
for a rigid plate are shown as well.

In order to compare the nonparallel spatial stability computations to linear stability
results based on the locally parallel #ow assumption, we "rst simulate the spatial develop-
ment of disturbances using the linearized Navier}Stokes system. The computational do-
main is sketched in Figure 4. The dimensional frequency at in#ow is u*

0
"u

0
;*

=
/d*

a
; the

spatial stability results in Figure 3 are based on the locally parallel #ow assumption, hence
the dimensionless frequency is u"u*

0
d*/;*

=
"u*

0
l*Red/;*2

=
. The Reynolds number (1)

based on the displacement thickness depends on x*, and consequently, prescribing a fre-
quency u

0
at in-#ow x

a
, the spatial evolution in the streamwise direction corresponds to

a displacement along the dotted line passing through (0, 0) and (Re, u
0
) on the linear

stability diagram. In Figure 3, the in-#ow corresponds to the point marked at Re"600 and
u

0
"0)08, the second point at Re"1100 on the dotted line corresponds to the end of the

physical domain (the bu!er domain starts here). [A second line passing through
(Re"688)315, u

0
"0)05921) corresponds to a rigid-wall case simulation to be discussed

later in this section].
The linear amplitude growth, from in-#ow x*

a
to a location x* on the wall, resulting from

stability computations based on the locally parallel #ow assumption, is given by

A

A
0

"expA!P
x*

x*
a

a*
i
dx*B ,

!a*
i

being the local dimensional spatial growth factor predicted by the linear stability
theory and A

0
is the amplitude at in-#ow. For the spatial numerical simulation, the in-#ow

perturbation being time-periodic with periodicity K"2n/u
0
, the velocity components may



Figure 3. Neutral curves for spatial instability:*, rigid case; } } }, spring-backed elastic plate with b"0)1 mm,
E"0)5 MN/m2 and i*"104 MN/m3. Spatial numerical computations correspond to displacement along: .....,

compliant case; } ) } ) }, rigid case. ? marks in-#ow and out-#ow of computational domain.

Figure 4. Sketch of the spatial computational domain.

BOUNDARY-LAYER FLOW WITH COMPLIANT WALLS 167
be decomposed into modes, once the #ow "eld has been obtained. For the streamwise
component (as well as for the wall-normal component) one may write

u (x, y, t)"
=
+
n/0

u
n1

(x, y)sin(nu
0
t)#u

n2
(x, y)cos(nu

0
t). (21)
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Injecting the time-periodic disturbance at in-#ow, for computations using the linearized
Navier}Stokes system only the fundamental mode is nonzero. To compare the results with
locally parallel, linear stability analysis, for this simulation the leading and the trailing edge
of the compliant wall coincide, respectively, with the in-#ow and out-#ow of the computa-
tional domain; hence "nite-length e!ects are minimized. The compliant-wall eigenmode
provides the disturbance velocity pro"le (20) at in-#ow x

a
. Hinged-end conditions

g"gA"0 at in-#ow and out-#ow are used in the dynamical equation (14). Although linear
stability analyses predict non-zero values of g and gA, the homogeneous boundary con-
ditions are easier to implement in the numerical solution procedure, the wall displacement
and its derivatives appearing in the Navier-Stokes system as a consequence of the mapping
(5).

The amplitude growth of the fundamental mode, the maximum being taken with respect
to y for each x-location, is shown in Figure 5 as the solid line, whereas the amplitude growth
predicted by the locally parallel, linear stability analysis is depicted as the broken line. In
this linear case, the amplitude has been normalized to be equal to one at in-#ow. After the
wave has reached the out-#ow of the whole domain, the modes are extracted from the #ow
"eld, following the simulation and integrating the convenient quantities over one period. In
this and all subsequent "gures the in-#ow corresponds to x"0. The curves coincide up to
a certain x-location and then they diverge, nonparallelism leading to higher spatial growth
rates. This is in qualitative agreement with the "ndings of Yeo et al. (1994), who showed that
nonparallelism has an overall destabilizing in#uence on the Tollmien}Schlichting instabili-
ties. The computation has been performed using 60 collocation points in the wall-normal
direction. The stretching factor ¸ in equation (15) is equal to 1, with y

.!9
"75. The length of

the physical domain is about 15j
TS

(j
TS

being the Tollmien}Schlichting wavelength). For
space discretization 20 points per Tollmien}Schlichting wavelength have been used. The
Figure 5. u
1
"maximum with respect to y of amplitude for fundamental mode of streamwise disturbance

velocity: **, linear spatial computation, for t'18K: } } }, linear growth predicted by locally parallel linear
stability analysis.
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solution has been advanced in time with a time-step Dt"0)1. The bu!er domain used here
has a length of 3j

TS
.

Solving now the full nonlinear two-dimensional Navier-Stokes system, an initial ampli-
tude of A"0)01 has been considered in equation (20). The fundamental mode (the
maximum with respect to y being taken for each x-location) for the compliant case is
compared in Figure 6 to a rigid-wall computation, for the same frequency and in#ow
Reynolds number. It is interesting to note that the nonlinearities, although weak, a!ect the
disturbance amplitudes which are decreased in the presence of the #exible boundary. The
corresponding linear amplitude growth for the compliant-coating case, shown as the dotted
line, is depicted as well, the initial amplitude being normalized for the curves to coincide at
in-#ow. One may expect a singular behaviour at in-#ow due to the use of a hinged-end
condition for the wall, and indeed the amplitude in the compliant case exhibits a small
oscillation in the vicinity of in-#ow at x"0. The wall displacement g(x, t) at t"18K is shown
in Figure 7, exhibiting as expected a sudden slope at in#ow. The bu!er domain starts at the
vertical dotted line, and indeed the amplitude is forced to converge to zero, and thus
re#ections are avoided at out-#ow. A bu!er domain which suppresses the perturbation has
also been used by Kloker et al. (1993) for numerical transition studies in boundary layers.

Strongly nonlinear computations for the #uid structure interaction available are based on
simplifying assumptions such as the locally parallel #ow approximation (Ehrenstein
& Rossi 1996) or an inviscid-#uid #ow model (Lucey et al. 1997a). Hence, in a further step to
test the nonlinear results of our numerical solution procedure, we compare rigid-wall results
with those published by Joslin et al. (1992), by considering an identical test-case. The
computational domain starts at Re"688)315 with u

0
"0)05921 in Figure 3. The end of the

physical domain is shown by a second point at Re"1636. (The length of the physical
domain is about 30j

TS
, and a bu!er domain with a length of 3j

TS
has been considered.)

Compared to Joslin et al. (1992), we used a rather coarse grid in the streamwise direction
(with approximately 20 points per TS wavelength that is about 700 points in the whole
domain). In the wall-normal direction we have used 60 collocation points, whereas about
640 time-steps have been used per period K. As in Joslin et al. (1992) the stretching factor
¸ in equation (15) has been set to 10 (with y

.!9
"75).

The amplitude of the fundamental mode for the initial amplitude A"0)0025 (again for
each x-location the maximum with respect to y has been taken) is shown in Figure 8. In
order to facilitate the comparison we have extracted approximately the results of (Joslin
et al. 1992, Figure 8) as data points. While the results almost coincide up to x+700, the
overall maximum peak is underestimated in our simulation. The amplitudes of the mean-
#ow distortion u

0
and the "rst harmonic u

2
are shown in Figure 9. Whereas the qualitative

behaviour is the same as in Joslin et al. (in particular the cusp in the amplitude of the
mean-#ow distortion nearby x"750 is captured), the maximum amplitudes are a factor of
almost 2 lower in our simulation and any quantitative comparison is not meaningful. A grid
re"nement, using 40 points per TS wavelength in the streamwise direction, led to almost
identical results (not plotted here). This indicates that the quantitative di!erences between
the results of Joslin et al. and ours are not only due to the rather coarse grid we used. One
may speculate, whether the discrepancy may also be a consequence of the di!erent
treatment in the bu!er domain. While in Joslin et al. the Navier-Stokes system is continu-
ously transformed into the (parabolic) boundary-layer equations, we transform the nonlin-
ear Navier-Stokes system into a linear Stokes system. The latter procedure is compatible
with the in#uence matrix technique we use to determine a Dirichlet boundary condition
for the pressure, equivalent to the incompressibility condition. This procedure proved
to be su$ciently robust to avoid re#ections at out-#ow in the coupled #uid}structure
system. However, this transformation, smoothing out the perturbation in the bu!er



Figure 6. u"maximum with respect to y of amplitude for fundamental mode of streamwise disturbance
velocity. Weakly nonlinear (A"0)01) spatial computation, for t'18K: } } }, compliant case; *, rigid case; ) ) ) ),

linear spatial computation.

Figure 7. Spatial nonlinear evolution of wall displacement g at t"18K, starting from ? at Re"600, u"0)08
in Figure 3, A"0)01. .... marks the end of the physical domain.
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Figure 8. u
1
"maximum with respect to y of amplitude for fundamental mode of streamwise disturbance

velocity, rigid case at t'33K, with A"0)0025, starting from ? at Re"688)315 and u"0)05921 in Figure 3; L:
data points extracted from Joslin et al. (1992, Figure 8).

Figure 9. Rigid case starting from ? at Re"688)315 in Figure 3 with A"0)0025: .... , u
0
"maximum with

respect to y of amplitude for mean-#ow distortion; }} }, u
2
"maximum with respect to y of amplitude for "rst

harmonic of streamwise disturbance velocity.
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domain, may a!ect the nonlinear amplitudes upstream, while reproducing the qualitative
behaviour.

Concluding the comparisons for the rigid-wall case, the trends of the nonlinear distur-
bance evolution are reproduced by our solution procedure, and the trends in the
#uid}structure system are what we are focusing on in this paper. We have performed the
same computations with a stretching factor ¸"1 and we obtained the same results, except
for some small oscillations near the out-#ow of the physical domain. For our compliant-
wall computations a stretching factor of ¸"1 should be appropriate by distributing the
collocation points closer to the wall rather than using higher values of ¸. The subsequent
computations have been performed using about 20 points per wavelength in x and 60
collocation points in y. For time integration, in general a time step of 0)1 has been used.

3.3. TENSIONED MEMBRANE WITH DAMPING

In a previous paper (Ehrenstein & Rossi 1996) nonlinear Tollmien}Schlichting waves for
a Blasius #ow over compliant coatings have been computed, using a locally parallel #ow
assumption. For a certain class of compliant coatings, modelled as a tensioned membrane
with damping, the nonlinear behaviour was shown to be subcritical. Here we take the same
coating characteristics as in Ehrenstein & Rossi (1996) and the dimensionless parameter
values in equation (2c) are de"ned as in Domaradzki & Metcalfe (1987), using reference
values at x*

0
and hence Re

0
with

m"m
0
Re

0
/Re, d"d

0
, ¹"¹

0
Re

0
/Re (B"i"0).

[Indeed, in (2c) d*
a

may be written as function of Re.] For Re
0
"580, d

0
"0)2 m

0
"0)0212,

¹
0
"15, which are the parameter values used in Ehrenstein & Rossi (1996), the spatial

linear stability results are depicted in Figure 10; the broken curve corresponds to the
Figure 10. Neutral curves for spatial linear instability:*, rigid case; } } }, tensioned membrane with damping,
m

0
"0)0212, d

0
"0)2, ¹

0
"15, Re

0
"580. In-#ow: ? at Re"400. Out-#ow: ? at Re"807.



Figure 11. Tensioned membrane, spatial nonlinear evolution at t"24K of wall displacement g, starting from
? at Re"400 in Figure 10. Initial amplitude A"0)001; .... , end of physical domain.

Figure 12. Tensioned membrane, spatial nonlinear evolution of wall displacement g, starting from ? at
Re"400 in Figure 10. Initial amplitude A"0)05. } } }, at t"24K;*, at t"25K. Bu!er domain starts at vertical

line } } }.
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compliant case. The in-#ow for the spatial numerical simulation is located at Re"400 in
the subcritical region and the frequency u

0
"0)08756 has been chosen such that the line

passing through (0, 0) and (Re, u
0
) is tangent to the nose of the neutral curve. The inlet of

the computational domain is located upstream of the membrane, that is a rigid wall with
a length approximately equal to 3j

TS
has been inserted between the in-#ow of the domain

and the leading edge of the membrane. To avoid numerical di$culties for this numerical
experiment however, the trailing edge of the membrane coincides with the computational
out-#ow boundary. The physical domain ends at Re"807, and in order to obtain reliable
results we had to consider a rather long bu!er domain with a length of 9j

TS
(the total

computational domain having a length of 24j
TS

). The nonlinear spatial development has
been computed for the amplitudes A"0)001 and A"0)05 in equation (20), the in-#ow
disturbance being the rigid-wall Tollmien}Schlichting pro"le.

The wall displacement for an initial disturbance amplitude A"0)001 is shown in
Figure 11, at t"24K. The bu!er domain starts at x"420 (at approximately 15
wavelengths from in-#ow). The leading edge of the tensioned membrane is located at
x"80, the boundary condition being g"0 at the leading edge (as well as at the trailing
edge at out-#ow). The wall displacement exhibits a very sharp gradient at the leading edge.
Besides the Tollmien}Schlichting instability, there is some evidence for the presence of
a surface wave. For a higher initial disturbance amplitude, A"0)05, a quite di!erent wall
displacement is shown in Figure 12. The solutions at two di!erent time periods (t"24K
and 25K) almost superimpose, but now the membrane exhibits an overall deformed state.
For this nonlinear computation the spatial evolution of the #ow "eld, although dominated
by the Tollmien}Schlichting instability, appears to be slightly a!ected by the overall
buckling-like state of the surface, as depicted in Figure 13, where the maximum with respect
to y of the streamwise disturbance velocity is shown. The amplitudes of the fundamental
Figure 13. Tensional membrane max
y
u (x, y) of streamwise disturbance velocity, A"0)05, at t"24K, starting

from ? at Re"400 in Figure 10; .... : end of physical domain.



Figure 14. Tensioned membrane, maximum with respect to y of amplitude for streamwise disturbance velocity
modes, A"0)05, t'24K: .... , u

0
; 2 , u

1
; } } } , u

2
.

Figure 15. Isolines of disturbance vorticity over tensioned membrane, with initial amplitude A"0)05, at
t"24K.
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mode u
1
, of the mean-#ow distortion u

0
and of the "rst harmonic u

2
(as function of x, the

maximum being taken with respect to y) are shown in Figure 14. Whereas the amplitudes
vary only slightly for 100(x(300, the perturbation ultimately decreases when reaching
the boundary of the physical domain (at Re"807 in Figure 10). Finally, a global picture of
the #ow for this last case (at t"24K) is given in Figure 15, where the isolines of the
disturbance #ow vorticity are shown, in the physical coordinates (x, y). The surface motion
clearly a!ects the #ow "eld, and the overall deformation is not negligible any more (here
y"1 corresponds to the displacement thickness).

Even though the computational domain is perhaps not large enough in the streamwise
direction, there is nevertheless evidence that nonlinearities strongly a!ect the waveform of
the surface instability. With the present computational facilities available it would hardly be
possible to substantially increase the spatial domain. Indeed, the numerical algorithm to
solve the full nonlinear system (10)} (14) is rather time-consuming. At each time-step the
non-Cartesian parts (6c)} (6e) of the operators have to be computed, which increases
substantially the CPU-time. The computations have been performed on a 128 Mbyte
workstation Digital Alpha 200 4/166, and one run with 24 Tollmien}Schlichting
wavelengths (with 480 point in x and 60 collocation points in y, with about 1)8]104

time-steps) necessitates about 48 h on the workstation. Using one processor of the
IBM/SP2 of the CNUSC, France, about 10 h were necessary.

3.4. SPRING-BACKED ELASTIC PLATE OF FINITE LENGTH

Again, we consider a spring-backed elastic plate with the same wall characteristics as
those of Section 3.1 (with an elastic modulus of E"0)5 MN/m2, spring sti!ness
i*"115 MN/m3, plate density o

m
"946 kg/m3, and plate thickness b"2 mm, the #uid
Figure 16. Neutral curves, spatial linear stability for spring-backed elastic plate with b"2 mm,
E"0)5 MN/m2 and i*"115 MN/m3 :*, Tollmien}Schlichting instabilities; } } }, #ow-induced surface instabili-

ties. In-#ow: ? at Re"1700; out-#ow: ? at Re"2460.



BOUNDARY-LAYER FLOW WITH COMPLIANT WALLS 177
being water with ;*
=
"18 m/s). The linear stability results are depicted in Figure 16 and,

besides the Tollmien}Schlichting instabilities, #ow-induced surface instabilities are now
present. Linear stability computations for similar compliant coatings have been reviewed
for instance by Carpenter (1990). In some cases, the neutral curve for Tollmien}Schlichting
waves splits into two disconnected curves for increasing Reynolds number. This may be
explained by considering the dependence of the dimensionless coating parameters (2c) on
the reference length d*, which in fact depends on Reynolds number Re in the locally parallel
#ow assumption used for the linear stability analysis. For instance, i increases with Re,
whereas B decreases with Re3. Now, as shown by Carpenter (1990) among others, for
su$ciently #exible coatings (for example by use of a small plate thickness) Tol-
lmien}Schlichting waves may be suppressed for a certain range of Re-values before appear-
ing again for increasing Re [due to a (dimensionless) spring sti!ness increase, for instance].
While the region of instability is still connected in the present case, the kink in the upper
branch of the neutral curve for Tollmien}Schlichting waves in Figure 16 illustrates that the
curve may be disconnected for slightly di!erent coating characteristics.

As shown by the broken curve in Figure 16, besides the Tollmien}Schlichting instability,
#ow-induced surface instabilities are also present. Inspecting the dynamical equation (2a),
in the present case free waves even in the absence of pressure forcing may exist. In the
absence of external forcing, a solution g"R (g

p
(x)e*ut ) of equation (2a) exists for

u2m!i'0 and then g
p
(x)"sin(bx) with b"[(u2m!i)/B]1@4. For the coating para-

meters considered here with a perturbation frequency u
0
"0)078 at the point marked at

Re"1700 in Figure 16, one "nds b"0)0914. When #uid #ow is present, the solution is
modi"ed and a #ow-induced surface instability may be observed [cf. Davies & Carpenter
(1997a)]. The spatial stability computation for the same frequency and Reynolds number
predicts three instability modes with complex wave numbers

a
1
"0)0932!i0)0001536, a

2
"0)143!i0)001012, a

3
"0)237!i0)01016.

The "rst wave number corresponds to the free-wave mode, the second one is again
a #ow-induced surface instability and the third one is the complex wave number associated
to the Tollmien}Schlichting instability.

In order to simulate a true physical experiment a panel of "nite length has been considered,
the leading edge being located at a distance of 3j

TS
from in-#ow and adjacent to the trailing edge

there is again a rigid plate with length equal to 6j
TS

. The compliant panel has a length of 15j
TS

with j
TS
"26)5. The free-wave mode wavelength is about 2)5 times larger than j

TS
, and this may

a!ect the length of the bu!er domain, for a semi-in"nite compliant panel. However, for the
present computation, a rigid plate is inserted between the compliant panel and the end of the
physical domain. Hence, the #ow disturbance at the end of the physical domain will be
dominated by the Tollmien}Schlichting instability, and a bu!er domain of length 3j

TS
has

proved to be su$cient to avoid re#ections at out#ow. The whole computational domain has an
overall length of approximately 27j

TS
. Rather than hinged-end conditions, which would lead to

a discontinuous "rst derivative of the wall displacement g at the leading and trailing edge, we
used clamped-end conditions where g and Lg/Lx are set equal to zero at the panel ends. Our
solution procedure is based on a variable transformation leading to various terms in the
momentum equations depending on the wall displacement, which necessitates some regularity
of g.

The spatial simulation starts at the point marked at Re"1700 in Figure 16 and the
physical domain ends at the second point marked at Re"2460. Using the full nonlinear
system, an initial amplitude A"0)001 has been considered at in-#ow. Simulations using
the linearized system have been performed as well, for comparison. The instantaneous wall
displacement at t"27K is shown in Figure 17. For both the linear and nonlinear



Figure 17. Elastic plate, spatial nonlinear evolution at t"27K of wall displacement g, starting from ? at
Re"1700 in Figure 16: * , nonlinear computation, initial amplitude A"0)001; } } } , linear computation.

Figure 18. Elastic plate, power spectrum for wall displacement depicted in Figure 17.
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computations the wall displacement exhibits an interaction between the di!erent instability
modes, the boundary being #at at the rigid parts adjacent to each side of the compliant
panel. A discrete Fourier transform has been taken of the wall displacement (the solid line in



Figure 19. Elastic plate, max
y
u(x, y) of streamwise disturbance velocity, at t"27K, starting from ? at

Re"1700 in Figure 16:* , nonlinear computation, initial amplitude A"0)001; } } } , linear computation. .... : End
of physical domain.
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Figure 17) and the power spectrum is depicted in Figure 18. It is clearly seen that there are
three components corresponding respectively to the three real parts of the spatial eigen-
values a

1
, a

2
and a

3
. The maximum with respect to y of the streamwise component of the

disturbance velocity is depicted in Figure 19, at t"27K. The instability of the #uid #ow is
clearly dominated by the Tollmien}Schlichting wave, and again the disturbance is sup-
pressed in the bu!er domain. A comparison with the linear results, plotted as a broken line,
shows that for an amplitude at in-#ow of A"0.001 the nonlinearities only slightly a!ect the
overall disturbance amplitude. The end of the physical domain being outside the unstable
region (cf. Figure 16), the amplitude ultimately decays in the physical domain.

4. SUMMARY

A computational method has been developed in order to study the spatial evolution of
disturbances in a boundary layer with compliant coatings. The method takes into account
the full nonlinear #uid-structure interaction as well as nonparallelisms due to the wall
displacement and to the boundary-layer growth.

The method is capable of reproducing the spatial evolution of Tollmien}Schlichting-type
waves, in the linear and nonlinear regime. Computations of linear disturbance evolution
con"rm that the inclusion of terms due to nonparallel e!ects leads to higher disturbances
amplitudes.

Concerning the nonlinear disturbance evolution, a tensioned membrane has been con-
sidered. Using a locally parallel #ow assumption, nonlinear travelling waves have been
computed in the past by Ehrenstein & Rossi (1996) in subcritical parameter regions. For the
physically more realistic numerical experiment reported in the present paper, even for initial
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disturbance amplitudes triggering the nonlinear regime, the Tollmien}Schlichting type
waves ultimately decay in the subcritical region. However, when strong nonlinearities are
present, the compliant membrane with damping exhibits an overall deformed state, and the
associated instability mechanism is not of travelling-wave type. The in#uence of nonlineari-
ties on the deformation of damped coatings has been assessed recently by Lucey et al.
(1997a), who focus on a nonlinear panel model driven by nonlinear perturbation pressure
resulting from unsteady potential #ow. While the present computations indicate that the
observed divergence-type behaviour depends on the nonlinearities, the importance of this
phenomenon has to be con"rmed by further numerical experiments.

A physically realistic numerical experiment has been performed by considering a spring
backed elastic plate of "nite length. A highly unstable parameter region has been considered
and it has been shown that the model is capable of reproducing the di!erent instability
mechanisms present in this coupled #uid-structure system.

Concluding, the computational model presented in this paper appears to be a numerical
tool suitable for studying the in#uence of compliant coatings on instabilities in boundary-
layer #ow. Here we have only considered a two-dimensional #ow-"eld, focusing on the
complex geometry depending on the streamwise direction and on time. If one supposes the
geometry to be homogeneous in a third, spanwise direction, one may expand the #ow
quantities in a Fourier series in the spanwise coordinate. The solution procedure described
in the present paper may then be adapted to solve the system for each Fourier mode, and
the numerical method used here may be the starting point for forthcoming developments.
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APPENDIX: THE INFLUENCE MATRIX TECHNIQUE

At each time-step, system (10)} (14) has to be solved. In order to "nd a Dirichlet boundary condition
for the pressure, equivalent to equation (12), one proceeds as follows (the technique is analogous to
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that used for instance by Ehrenstein & Peyret (1989) for a vorticity-stream function formulation of the
Navier-Stokes equations). Dropping the prime for the operators and the variables, the system
(10)}(14) is formally written as

(D!3p)un`1"!$qn`1#f n,n~1, (A1)

Dqn`1"gn,n~1, (A2)

$ ' un`1"hn,n~1 on the boundary C, (A3)

un`1"0, vn`1"agn`1#gn,n~1 a y"0, (A4)

¸gn`1"gn,n~1!pn`1#un,n~1 at y"0, (A5)

¸ being the di!erential operator of the dynamical equation (14) and gn,n~1 are the explicit terms
resulting from the time-di!erencing (and q"Re p). (Note that u, v are zero at in"nity, and equal to
perturbation pro"les at in-#ow.) First, before starting the time integration, the following set of
equations is solved:

DqL
k
"0, qL

k
(q

i
)"d

ki
,

with q
i
the ith point on the boundary C, and d

ki
being the Kronecker symbol.

Knowing qL
k
, 14k4K, K being the total number of points on the boundary (in-#ow, compliant

wall and out-#ow, the perturbation pressure and velocity being zero at in"nity), one computes

¸gL
k
"!pL

k
and (D!3p)u;

k
"!$qL

k
,

with

uL
k
"0, vL

k
"agL

k
at y"0; uL

k
"vL

k
"0 elsewhere on C.

Knowing the elementary solutions, the columns of the in#uence matrix M are computed once and for
all, with

M"[$ ' u;
1DC

, $ ' u;
2DC

,2,$ ' u;
KDC

],

each column vector $ ' u;
j DC

being evaluated at the points on the boundary.
During the time integration, at each time-step the following inhomogeneous problems are solved:

DqJ "gn,n~1, qJ DC"0,

¸gJ "gn,n~1#un,n~1 at y"0,

(D!3p)u8 "!$qJ #f n,n~1,

uJ "0, vJ"agJ #gn,n~1 at y"0,

(# inhomogeneous in#ow conditions). The values of $ ' u8 at the boundary points are computed and
the vector c solution of

Mc"!$ ' u8 DC#hn,n~1

contains the pressure values at the boundary points equivalent to equation (A3). Once the vector
c determined, equation (A2) is solved with qn`1(q

i
)"c

i
, 14i4K, equivalent to equation (A3); then

g is computed using equation (A5), and "nally equation (A1) is solved with the kinematical conditions
(A4).
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